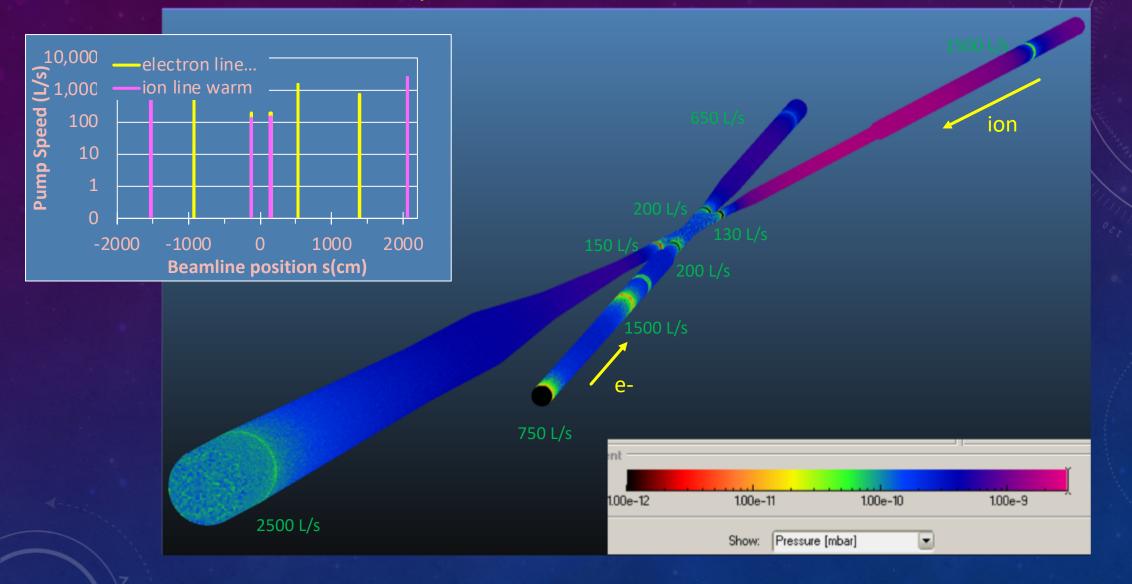


PERSONNEL

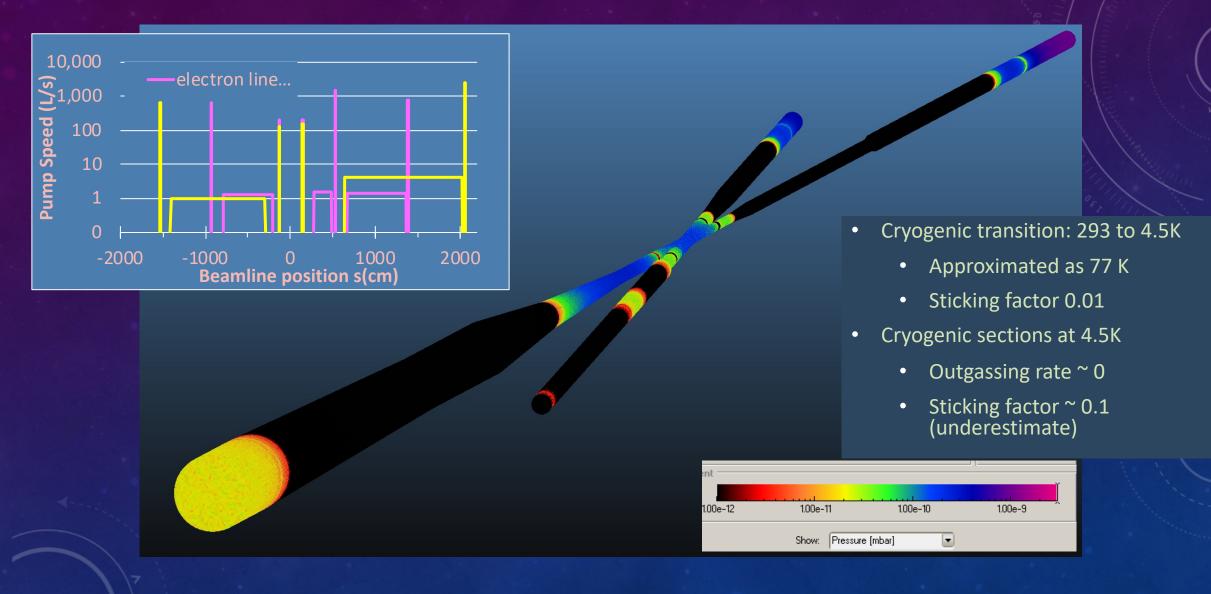
- Vitaly Baturin (Old Dominion University)
- Pavel Degtiarenko (JLab)
- Latifa Elouadrhiri (JLab)
- Yulia Furletova (JLab)
- Charles Hyde (Old Dominion University)
- Kyungseon Joo (University of Connecticut)
- Andrey Kim (University of Connecticut)
- Alexander Kiselev (BNL)
- Vasiliy Morozov (JLab)

Red = Partial salary support by eRD21
Blue = Travel Support

- Amethyst Maps (ODU)
- Nikolay Markov (UConn)
- Christoph Montag (BNL)
- Christine Ploen (ODU)
- Youri Sharabian (JLab)
- Marcy Stutzman (JLab)
- Mike Sullivan (SLAC)
- Mark Wiseman (JLab)

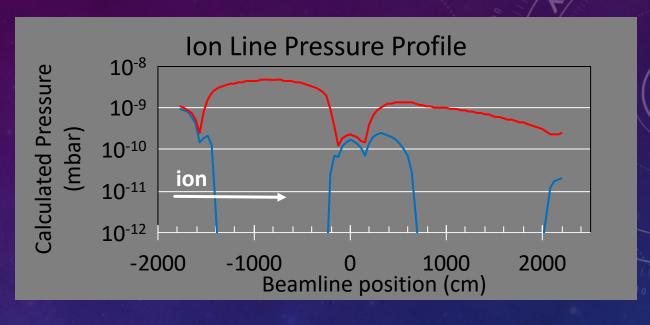

INTRODUCTION

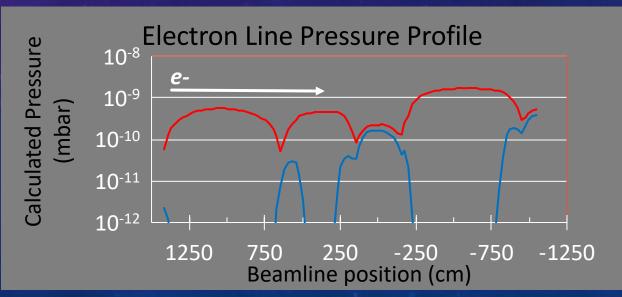
- Detailed simulations of the EIC machine related backgrounds in the Interaction Region (IR) are crucial for proper design of the beam pipe, pumping system, detectors and front-end electronics
- Mitigating the backgrounds is an important aspect of the Machine-Detector Interface (MDI).


ACCOMPLISHMENTS AND NEXT STEPS IN FY19

- Vacuum Studies: New Beam Pipe
- Synchrotron Radiation
- Beam Gas Interactions
- Total Inclusive (physics) Rates
- Total Bremsstrahlung Rates
 - Tagged Bremsstrahlung
 - Tagged 0° (e,e') scattering

VACUUM PROFILE, MAGNETS AT 298 K

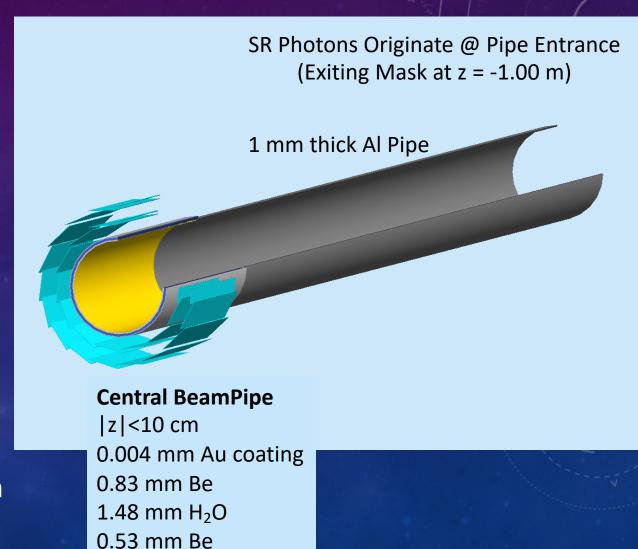

VACUUM PROFILE, MAGNETS AT 4 K



eRD21

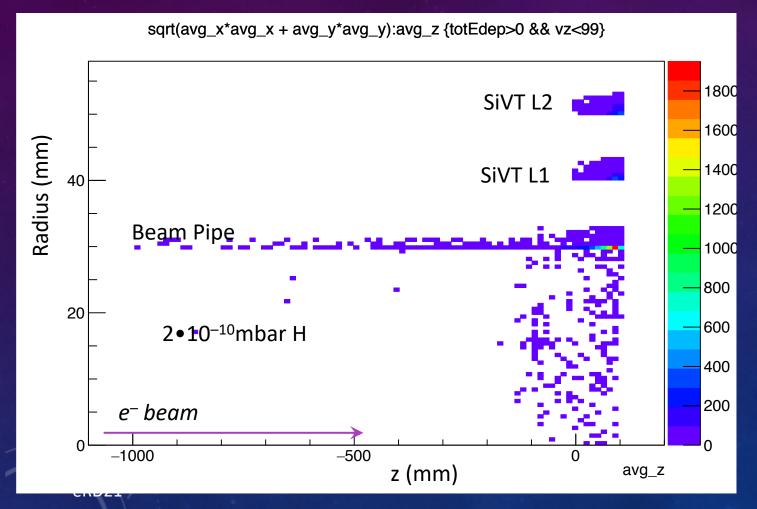
VACUUM PROFILES

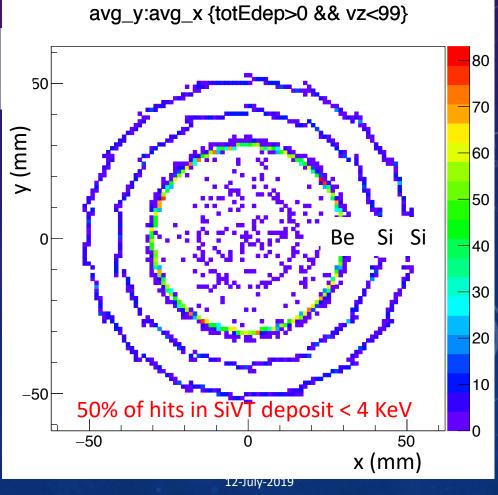
- Red: Magnets 298 K
- Blue: cold bore magnets (4 K).
- Realistic vacuum studies complete with Molflow
 - Required NEG pumping speeds identified



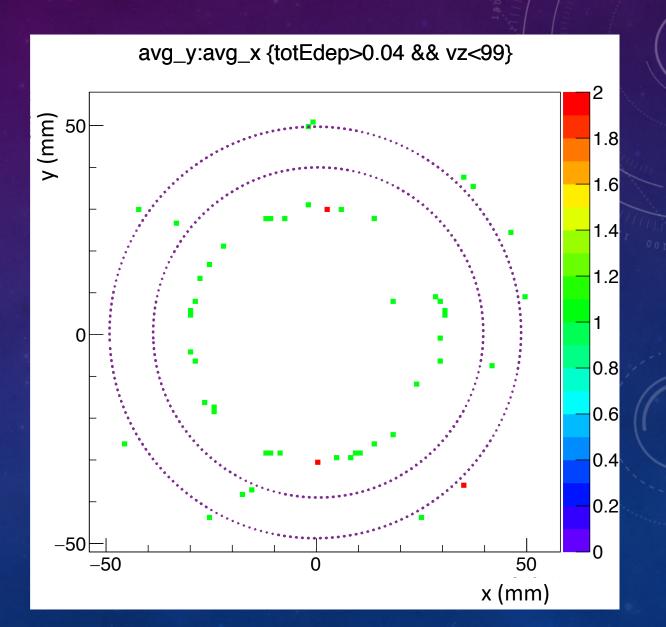
BEAM GAS INTERACTIONS

- Local studies
 - Vacuum in IR region only (±1.5 m upstream of IP)
 - This is the dominant vacuum "bulge"
- Next steps (to be completed by Oct. 2019)
 - Extend to entire ion straight section upstream of IP
 - Include upstream iron yoke of Detector solenoid.
 - Aperture \sim 16 cm radius (around electron beam) at z=-3m.
 - Pavel Degtiarenko & Vitaly Baturin starting on FLUKA simulations
 - Pavel Degtiarenko previously completed site radiation hazard study for 2014 JLEIC design.


SYNCHROTRON RADIATION

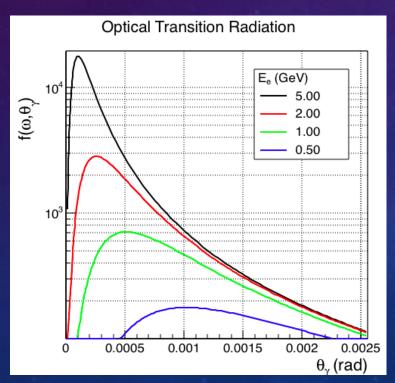

- SR Code ported to JLab
 - Semi-analytic treatment efficiently generates energy flux in 6-dim phase space.
 - After-burner created to convert to statistical ensemble of photons
- Photons passing 12mm radius Cu mask at z=1m input to GEANT4
 - 64 mW deposited into walls of central chamber
 - Occupancy in Si Vertex Tracker
 - 1.5 KW in zero degree Total Absorption
 Calorimeter at ~10 m

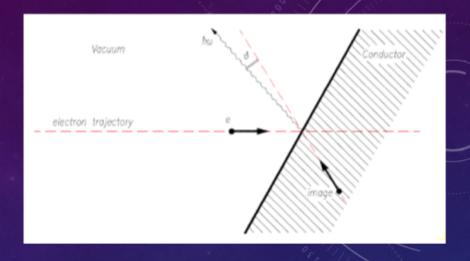
BEAM PIPE & SILICON VERTEX TRACKER: RAW HITS


• X-Rays from $5 \cdot 10^8 e^- @ 10.5 \text{ GeV}$ • JLEIC: $5 \cdot 10^9 e^- / nsec @ 10.5 \text{ GeV}$

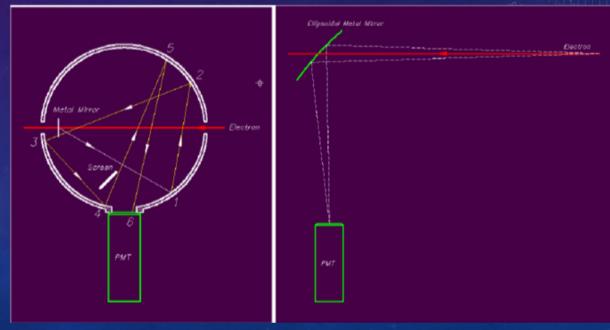
BEAM PIPE & SVT: SYNCH RAD HITS ABOVE 40 KEV

- Dotted lines at SVT
- Actual hits higher:
 - Pileup of primary/secondary
 & multiple photons.
- Next Steps:
 - Compute Pile-up in each SVT channel, accumulated over expected integration time.
 - Add disk SiVT and outer barrel

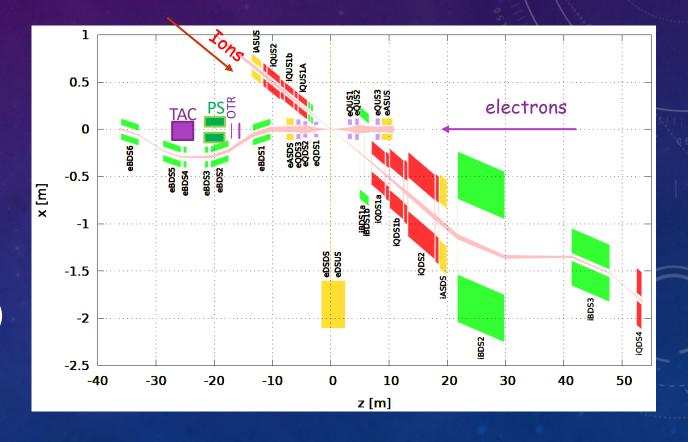

FY20 PROPOSAL


- Background Studies
 - Detector occupancies from synchrotron radiation
 - Normalized to luminosity and channel AREA x INTEGRATION-TIME
 - Beam energy dependence (3-4x more electrons at 5 GeV than 10 GeV)
 - Vacuum design studies
 - Develop engineering design of *in-situ* NEG strips or modules.
 - Beam-Gas Interaction Studies
 - Ion beams
 - Electron beams
 - Neutron studies
- Integration of the EIC Software framework
- Spin-dependent physics (beam-beam) rates
 - Inverse energy weighted cross section = GDH sum rule
- Luminosity Monitor via Optical Transition Radiation (OTR)

eRD21 12-July-2019 12


OPTICAL TRANSITION RADIATION

- Emission probability $\sim 2\%$ per e^- , e^+
 - Sharply peaked around "reflection angle"
 - Lepton energy from 0 to full e⁻ beam energy



OTR in 0° photon line, between Pair Sp. Convertor and magnet

OTR: POSSIBLE EIC IMPLEMENTATION

- Located in 0° photon line after first dipole of downstream electron chicane
- Backward OTR detection requires thin radiator/mirror between (thicker) e[±] convertor foil, and before PS dipole
- Focusing mirror option
 - Simple, Fast
 - Could monitor bunch-bunch variations (averaged over ~1 min)
- Integrating sphere
 - Possible absolute monitor, but radiation vulnerable.

eRD21

OPTICAL TRANSITION RADIATION STUDY

- MC simulations
 - Visible light phase space based on e^{\pm} phase space from conversion of bremsstrahlung spectrum
 - Direct backgrounds on phototube
 - Direct backgrounds on integrating sphere
- Prototype
 - Can be tested in JLab Hall D Pair Spectrometer (see also eRD22 TRD)
 - Mirrors:
 - Flat & Focusing,
 - Vacuum chamber,
 - PMT(s),
 - Integrating Sphere,
 - Mounting hardware.

eRD21 12-July-2019 15

BUDGET: 100%

\$155K

• 50% Post-Doc (ODU)	
----------------------	--

- Beam-Gas Simulations,
- Neutron thermalization in full accelerator model
- 50% Post-Doc (UConn)
 - Beam-Gas and Synchrotron radiation simulations
 - OTR simulations & Prototype
- Graduate Student (ODU)
 - Spring, Summer 2020:
- OTR Prototype (ODU/JLab)
- Travel (JLab)
 - SLAC—JLab, JLab—BNL

\$51K

\$51K

\$25K

\$20K

\$8K

eRD21

12-July-2019

BUDGET REDUCTIONS

• 80% Budget

- Reduce Post Doc efforts to 45%
- Reduce Grad Student to summer 2020 only
- Eliminate integrating sphere from OTR Prototype
- Reduce Travel
- 60%
 - Post Docs @ 45%
 - Eliminate Grad Student support
 - Eliminate OTR Prototype

\$124K

\$93K

SUMMARY

- All FY19 tasks are completed or being finalized and documented on track to complete the project deliverables by October first 2019
- Strong team of nuclear and accelerator scientists and engineers in place
- Ready to perform detailed rates and occupancies due to different background sources to assist optimization of detector, associated electronics, beam-profile and beam pipe as design changes
- Ready to incorporate our work into EIC framework
- We request FY20 funding to perform detailed simulations of the EIC machine related background for both JLEIC and eRICH configurations:
 - Synchrotron radiation modeling code
 - Static & dynamic vacuum modeling
 - Neutron flux
 - Optical Transition Radiation monitor

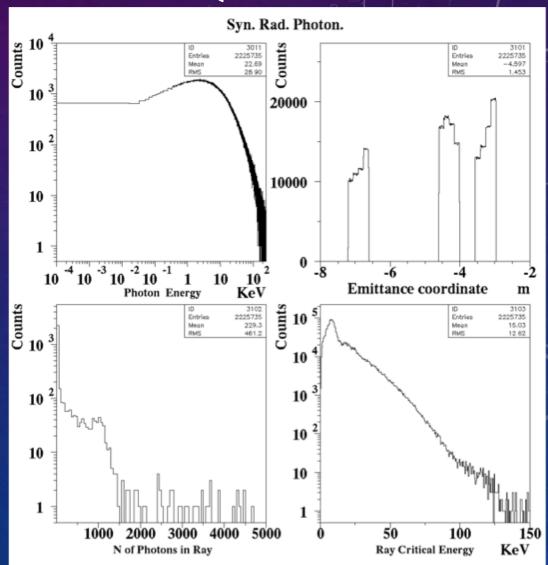
1. WHAT SOFTWARE TOOLS ARE CURRENTLY MISSING AND IMPEDE YOUR PROGRESS IN DETECTOR DEVELOPMENT EFFORT?

FY19 limitations

- Only Mike Sullivan from SLAC was able to run SR Code
- Problem resolved, SR Code is now ported to JLab and we are making it userfriendly and publicly accessible

Resources from FY20 if fully funded will allow

- Implement the design and Fluka and Geant3: the tools exist we need just resources to perform the systematic studies, this is of particular importance for neutron background studies: This was not possible in FY19 due the funding limitation.
- Software Requirement for next stages
 - Alex Kiselev will guide us in use of EIC_ROOT, or other eRHIC-centric tools
 - Will work with JLEIC software team.
 - A more clearly standardized and unified framework for running, modifying, analysis and reconstruction simulations would be an enormous benefit


eRD21

eRD21 12-July-2019 20

SYNCHROTRON RADIATION FLUX FROM FFQ

- Synrad code ported to Jlab.
 - Synchrotron radiation per 10¹⁰ electrons (including beam tail).
 - Updating/improving user interface
- Post-processor to generate "Lund file" of photons for input to GEANT4.

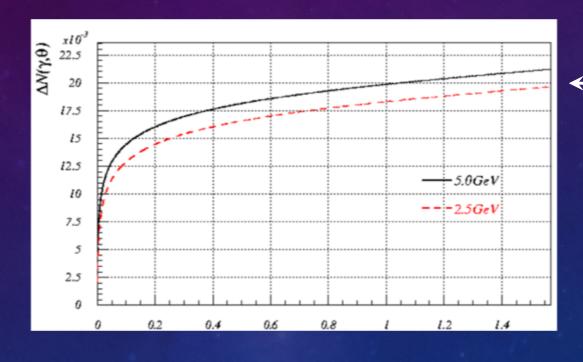
GLOBAL PHYSICS RATES

 Total ep →X hadron production dominated by photo-production (~0° electron scattering)

• Rate =
$$\mathcal{L}_{ep} \int_{Th}^{s} dW^2 \int dQ^2 \frac{d^2\Gamma}{dW^2dQ^2} \sigma_{\gamma}(W^2)$$

• Rate
$$\rightarrow \mathcal{L}_{ep} \int_{Th}^{s} dW^2 \frac{t^V(W^2, Q_{Max}^2)}{W^2 - M^2} \sigma_{\gamma}(W^2)$$

•
$$t^V = \frac{\alpha}{\pi} ln \left[\frac{Q_{Max}^2}{Q^2(0^\circ)} \right] \left(1 - y + \frac{1}{2} y^2 \right)$$
 $y \to \frac{W^2 - M^2}{S - M^2}$

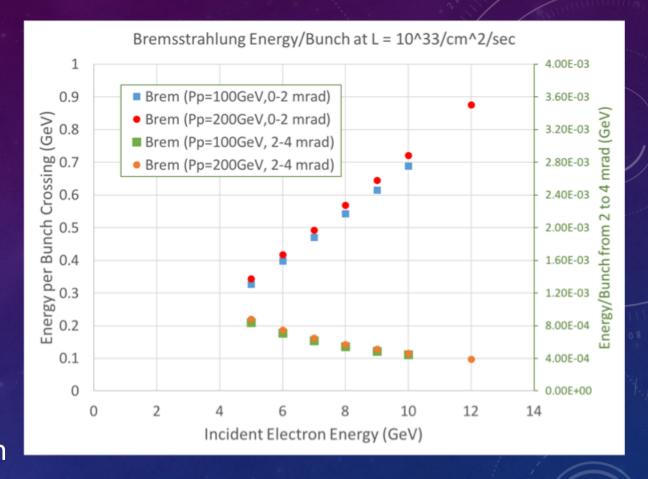

- t^V : weak dependence on Q_{Max}^2 , W^2 , s.
- Integrating over empirical γ p cross section
 - Total hadron production rate at $3x200 \text{ GeV}^2$ ($\mathcal{L}=10^{34}/\text{cm}^2/\text{sec}$) = $\frac{0.5 \text{ MHz}}{10^{12}}$
 - Scales $\sim \ln(s_{ep}/Threshold)$

PHYSICS RATES e+A

- R(eA) ~ Z•R(ep) + N•R(en) + Giant Dipole Resonance
 - Semi exact formula for 1/energy weighted integral over GDR
 - Results for January 2020

23

OTR: ANGLE INTEGRATED FLUX



Integration angle (rad)

2% per incident electron

OTR RATE

- Integrated bremsstrahlung flux
 - 0 to 2 mrad; and
 - 2 to 4 mrad
- With a $X/X_0 = 1\%$ radiator:
 - Approx 1000 optical photons (350-450 nm) per sec with 10 GeV electron beam and $\mathcal{L}=10^{33}/\text{cm}^2/\text{sec}$
 - 1% Lumi measurement in 1 min
 - 1% Lumi measurement per bunch in 1 hour

